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Smith-Purcell radiation emission in aligned nanoparticles

F. J. Garcı´a de Abajo*
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720

~Received 19 August 1999!

Smith-Purcell~SP! radiation produced by interaction of fast electron beams running parallel to strings of
nanoparticles is investigated. Results for the radiation emission probability and electron energy loss spectra
using finite and infinite strings of Al and silica spheres are presented. Both of these quantities are obtained by
solving Maxwell’s equations exactly using a multipole expansion approach. The response of the spheres is
described in terms of their local frequency-dependent dielectric functions. In silica, the emission probability is
seen to coincide with the energy loss probability within the gap region, where the solid cannot absorb any
energy. Large emission rates are predicted for Al, suggesting its possible application in tunable soft uv light
generation. The dependence of the emission on the size of the spheres, the string period, and the electron
energy is discussed in detail. Finite size effects are also studied for strings of 1–15 Al spheres.

PACS number~s!: 41.60.2m, 42.25.Fx, 61.16.Bg
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I. INTRODUCTION

When an electron moves parallel to an optical grating
is capable of emitting radiation along directions that depe
on the emitted photon energy. This is the well-known Smi
Purcell~SP! effect@1–16#, first reported nearly half a centur
ago @1#. Successive experimental demonstrations of the
fect were carried out since then using 30–300 keV electr
to produce light of wavelength in themm region@2,3#. Rela-
tivistic electrons have been also employed to generate
radiation @8,13#, very intense along the forward directio
@11#. Recently, 20–40 keV electron beams produced by c
ventional electron microscopes and coupled to metallic g
ings of periods in the submillimeter range have been pro
to be an efficient tool for generating far infrared radiati
@14,15#.

Early theoretical descriptions of the SP effect relied
the diffraction of the evanescent waves associated with
moving electron@17,4,5,10#, and more recently, it has bee
emphasized that an equivalent description results from
currents induced on the grating surface by the passage o
electron@12#. Since these induced currents have to follow t
curved profile of the grating, they are modulated in tim
giving rise to the emission of radiation. Theoretical stud
of the SP effect have been devised with a view to be app
to produce x-rays@9# and also in the acceleration of electro
@6#. Most of the theoretical treatments of the SP effect
sume that the grating can be considered to be perfectly
ducting, though some effort has been made to include pla
oscillations in the response of the grating when the energ
the emitted radiation matches the plasma frequency@7#.

The present work is intended to incorporate the effec
the frequency dependence of the response function of
material that couples to the electron to produce SP radiat
This plays a central role in the examples that follow, whe
radiation of 1215 eV is examined, for which the behavio

*Permanent address: Departamento de CCIA, Facultad de In
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of the materials used here is far from being that of a perf
metal. Local frequency-dependent dielectric functions c
stitute an excellent approximation when the electrons tra
outside the materials under consideration, in which case
effect of dispersion in the response function is not import
@18#.

The energy loss suffered by the electrons has been in
tigated as well in order to determine the fraction that is tra
formed into radiation. Following previous discussions
electron energy loss spectra@19–23#, the loss probability has
been obtained from the retarding force produced by the
duced field acting back on the electron. In this context, re
tivistic results based upon numerical simulation have b
reported for the energy loss and the radiation emission p
abilities due to the interaction of fast electrons with planes
spheres@24,25#. A nonrelativistic analytical treatment of th
energy loss spectra in the presence of an infinite se
aligned spheres has also been given recently@26#.

The geometry considered here consists of periodic stri
of identical finite objects, for which an analytical relativist
description is offered. Advances towards a practical reali
tion of this geometry are being produced in the context
quantum dots on the nanometer scale@27#. The method used
to calculate radiation emission probabilities consists in so
ing exactly the Maxwell equations by using a multiple sc
tering technique@28# that permits us to express the respon
of a collection of dielectric objects in terms of their ind
vidual scattering properties. Although this method can
applied to arbitrary objects, strings of spheres are conside
in this work for simplicity, since the scattering matrices b
come analytical in that case@29,30#.

The details of the theory of SP radiation produced by
interaction of fast electrons with aligned strings of dielect
finite objects are presented in Sec. II. Numerical results
strings formed by spheres of Al and SiO2 are offered in Sec.
III. Finally, the main conclusions are summarized in Sec.
Gaussian atomic units~a.u., that is,e5m5\51) will be
used from now on, unless otherwise specified.

II. THEORY

A theory is presented in this section to calculate elect
energy loss and photon emission probabilities for the geo
etry illustrated in Fig. 1. An electron is assumed to be mo
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5744 PRE 61F. J. GARCI´A de ABAJO
ing parallel to an infinite periodic string of dielectric object
The interaction between the fast electron and the string
duces induced charges and currents in the objects, and
result, radiation is emitted over a continuum spectrum.

Expressions for the photon emission and electron ene
loss probabilities will be obtained in Secs. II C and II D
respectively, employing a general multiple scattering te
nique to calculate the induced electromagnetic field. T
technique is reviewed in Sec. II A for an arbitrary clust
@28,31#. The application to the particular case of a period
string is presented in Sec. II B.

A. Multiple scattering approach to the electromagnetic
problem

The method employed here to find the electromagn
field in the presence of a cluster of dielectric objects is ba
upon multiple elastic scattering of multipole expansio
~MESME! around the positions of the objects of the clus
@28,31#. The electric and magnetic fields in the vacuum
gion surrounding the cluster can be written in frequen
spacev in terms of magnetic and electric scalar functio
ca

M andca
E as @32,30#

FIG. 1. Schematic representation of the geometry considere
this work. An electron is traveling parallel to an infinite period
string of dielectric objects with velocityv and impact parameterb
with respect to the axis of symmetry of the string, chosen to be
z axis. As a result of the interaction between the string and
electron, radiation is emitted along directions (u,w) with frequency
v such that the phase difference between the contributions to th
field coming from contiguous objects is a multiple of 2p @i.e.,
vd(1/v2cosu/c)522pn, where d is the string spacing#. The
present formalism can be applied to strings of arbitrary obje
provided one knows their scattering matrixt. For simplicity, the
particular case of spheres of radiusa has been considered here.
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E5Laca
M2

i

k
“3Laca

E ~1!

and

H52
i

k
“3Laca

M2Laca
E , ~2!

wherek5v/c andLa52 i (r2ra)3“ is the orbital angular
momentum operator relative to a given positionra . Similar
to the electromagnetic field, the scalar functions satisfy
wave equation (¹21k2)c50, and therefore, they have to b
made of free plane waves. In particular, for the the exter
field, they can be expanded in terms of spherical harmon
YL as

ca
ext~r !5(

L
j L@k~r2ra!#ca,L

ext , ~3!

where L5( l ,m), j L(u)5 i l j l(uuu)YL(û), j l is a spherical
Bessel function, andca groups both magnetic and electr
components. Equation~3! is a consequence of the assum
tion that no external sources are present in the vacuum
gion under consideration, so that the external field can
lead to a net energy flux through any closed surface.

The objects of the cluster will be labeled by nearby po
tions ra . Single scattering~SS! of the external field on one
of those objects~e.g.,a) produces induced charges and cu
rents that set up a scattered field whose corresponding s
functions can be written as@28#

ca
SS~r !5(

L
hL

(1)@k~r2ra!#ca,L
SS , ~4!

wherehL
(1)(u)5 i lhl

(1)(uuu)YL(û) andhl
(1) is a Hankel func-

tion @33#. This equation is valid for a sphere centered atra
and fully containing objecta ~i.e., containing the induced
charges and currents!.

In the linear response approximation, the SS field is p
portional to the external field, so that

ca,L
SS 5(

L8
ta,LL8ca,L

ext ,

where ta,LL8 is the so-called scattering matrix. Explicit ex
pressions forta,LL8 can be found in the case of both hom
geneous spheres and coated spheres@29,30#, for which
ta,LL85ta,ldLL8 and magnetic and electric components a
decoupled~see Sec. III!.

The field induced by the presence of the cluster can
regarded as the result of self-consistent scattering of the
ternal field, and therefore, it can be expanded into multipo
in the same way as the SS field in Eq.~4!. The total induced
field is given by the sum

c ind~r !5(
a,L

hL
(1)@k~r2ra!#ca,L

ind , ~5!

where a runs over cluster objects. Moreover, the field i
duced by each objecta is the sum of the SS contributio
plus the result of the propagation of the field induced
every other objectbÞa from b to a, followed by scattering
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at a. This leads to the self-consistent relation@28#

c̃a
ind5c̃a

SS1ta (
bÞa

Habc̃b
ind , ~6!

where matrix notation has been adopted~i.e., c̃a
SS(ind) is the

vector of componentsca,L
SS(ind), and ta is the matrix of com-

ponentsta,LL8) and the operatorHab accounts for the noted
propagation. The latter can be written as@28,31#

Hab5Rab
21Tab

z Gab
z Rab , ~7!

whereRab is a rotation matrix@33# that acts on the spherica
harmonics of the multipole expansions and is defined s
that it brings the bond vectorra2rb onto the positivez axis;
the matrixGab

z of components

Gab,LL8
z

5dmm8A4p (
l 95u l 2 l 8u

l 1 l 8

A2l 911

3 i l 9hl 9
(1)

~kura2rbu!^ l 8mu l 90u lm& ~8!

propagates spherical harmonics fromb to a @34#;

^L8uL9uL&5E dV YL8
* ~V!YL9~V!YL~V!

is a Gaunt integral; and the following operator is defined
compensate for the lack of invariance of multipoles un
translations of their origin@28,31#:

Tab,LL8
z

5F dLL8 0

0 dLL8

G1dmm8kura2rbuF pll 8m qll 8m

2qll 8m pll 8m

G ,

~9!

where

qll 8m5
md l ,l 8

l ~ l 11!
,

pll 8m5d l 11,l 8Dl 11,m2d l 21,l 8DL ,

and

DL5
i

l
A ~ l 1m!~ l 2m!

~2l 21!~2l 11!
.

Notice thatGab
z does not mix electric and magnetic comp

nents, whereasTab
z acts on the two-component scalar fun

tions

FcM

cE
G

mixing electric and magnetic parts via off-diagonal term
qll 8m .

B. Application to an infinite string

Let us consider a periodic string of identical objects ce
tered around positionsra5(0,0,ad), whered is the spacing
h

o
r

-

anda runs over the integral numbers~see Fig. 1!. An exter-
nal electron will be taken to be moving along the trajecto
described byr t5(b,0,vt), whereb is the impact paramete
with respect to the axis of the string.

Equation ~3! is valid inside the region free of externa
sources defined by the sphere of radiusb centered around
ra . More precisely, the coefficientsca,L

ext are given by
@30,31#

ca,L
ext 5fL

exteiavd/v, ~10!

where

FfL
M ,ext

fL
E,extG5

22p i 12 lk

l ~ l 11! c
KmFvb

vg G F 2mAL
1v/c

BL /g
G , ~11!

Km is the modified Bessel function of orderm, g
51/A12(v/c)2, andAL

1 andBL are coefficients that depen
exclusively on the ratiov/c. In particular,AL

1 is implicitly
defined by

E dteivthL
(1)@k~b,0,vt !u#5 i l

AL
1

v
KmS vb

vg D .

Explicit expressions forAL
1 and BL have been given else

where @30,31# and they can be constructed in terms
Gegenbauer polynomialsCn

m as @35,36#

AL
15 i l 1m~2m21!!!A~2l 11!

p

~ l 2m!!

~ l 1m!!

3
~c/v !m11

gm
Cl 2m

m11/2~c/v !, m>0,

making use ofAl ,2m
1 5(21)mAL

1 for m,0, and

BL5Al ,m11
1 A~ l 1m11!~ l 2m!

2Al ,m21
1 A~ l 2m11!~ l 1m!.

The periodicity of the string is reflected in the fact th
Hab depends ona and b only through the differencea
2b. Actually, ura2rbu5dua2bu in Eqs. ~8! and ~9!. In
addition, the rotation matrices reduce to@33#

Rab,LL85H dLL8 , a.b

~21! l 1md l l 8dm,2m8 , a,b.
~12!

Therefore, using Eq.~7!, one has thatHab depends ona and
b only througha2b. This, together with Eq.~10!, permits
us to recast Eq.~6! as

f̃ ind5
1

12tH~v/v !
tf̃ext, ~13!

where thea dependence has been dropped fromt since all
objects of the string are assumed to be identical,

H~q!5 (
aÞ0

Ha0e2 iaqd, ~14!
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andf̃ ind is implicitly defined by the coefficients of the mu
tipole expansion ofc ind @see Eq.~5!#,

ca,L
ind 5fL

indeiavd/v. ~15!

Equation~15! is a consequence of the periodicity of the sy
tem and the assumption that the electron is moving w
constant velocity parallel to the string. Notice that the dep
dence ofca

ind andca
ext on the objecta comes exclusively via

the phase factors exp(iavd/v).
The operatorH in Eq. ~13! depends on both the strin

spacing and the electron velocity. However, it is independ
of the particular shape and composition of the objects
made up the string. This latter information is fully contain
inside the scattering matrixt.

Using Eqs.~7!, ~8!, ~9!, ~12!, and~14!, the components o
H are found to be

HLL8~q!5dmm8Hll 8
m

~q!,

where

Hll 8
m

~q!54p (
l 95u l 2 l 8u

l 1 l 8

A2l 911F f l l 8 l 9
m gll 8 l 9

m

2gll 8 l 9
m f ll 8 l 9

m G ,

f l l 8 l 9
m

5^Lu l 90u l 8m&~h l 9
2

1h l 9
1

!1@Dl 11,m^ l 11,mu l 90u l 8m&

2DL^ l 21,mu l 90u l 8m&#~z l 9
2

1z l 9
1

!,

gll 8 l 9
m

5^Lu l 90u l 8m&
m

l ~ l 11!
~z l 9

2
2z l 9

1
!,

and

Fh l
6

z l
6
G5 (

a51

`

i lhl
(1)~akd!e6 iaqdF 1

akd
G . ~16!

Equation~16! involves slowly convergent series~i.e., the
general term goes as 1/a in the upper part and 1 in the lowe
part times phase factors for large values ofa). However, the
functionsh l

6 andz l
6 can be efficiently calculated using th

identities

h l
652

1

2kd
$ ln@2~12cosÃ6!#1 i ~Ã62p!%

1 (
a51

` F i lhl
(1)~akd!2

eiakd

akd Ge6 iaqd ~17!

and

z l
65

1

e2 iÃ6
21

2
i l ~ l 11!

4kd
$ ln@2~12cosÃ6!#

1 i ~Ã62p!%1 (
a51

` H i lakdhl
(1)~akd!

2F11
i l ~ l 11!

2akd GeiakdJ e6 iaqd, ~18!
-
h
-

nt
at

whereÃ65@(k6q)d#mod 2p and an infinitesimally-small
positive imaginary part has been added tok. This is consis-
tent with the retarded response formalism implicitly assum
in Eqs. ~4!, ~5!, and ~8! ~i.e., the choice of outgoing wave
hL

(1) rather than incoming waves!. The sums in Eqs.~17! and
~18! converge faster than that in Eq.~16!, since their terms
die off as 1/a2 whena→`.

As expected, when the sphere separation is very la
(kd@1), the sum in Eq.~16! vanishes andH.1. Then, the
isolated sphere limit is recovered from Eq.~13!.

C. Radiation emission

Inserting the multipole expansion of the induced field in
Eqs.~1! and~2!, and making use of Eqs.~5! and~15!, the far
electric and magnetic fields reduce to@37,31#

Eind.f~V!
eikr

r
, r→` ~19!

and

H ind. r̂3f~V!
eikr

r
, r→`, ~20!

where f is normal tor , since these are radiative fields th
decay with the distance as 1/r . In the case under conside
ation, one finds

f~V!5x~V!(
a

eiaD

k
,

where

x~V!5(
L

@fL
M , ind LYL~V!1fL

E, indr̂3LYL~V!#,

~21!

LYL~V!5FC1

2
Ylm11~V!1

C2

2
Ylm21~V!,

2
iC1

2
Ylm11~V!1

iC2

2
Ylm21~V!,mYL~V!G

are vector spherical harmonics

D5vdS 1/v2
cosu

c D , ~22!

andV5(u,w) denotes the polar angles ofr with respect to
the electron trajectory~see Fig. 1!.

The probability of emitting a photon due to the interacti
of the string with the external electron can be obtained
integrating the Poynting vector over a sphere of arbitrar
large radiusr. One finds that the probability of emission p
unit of energy range and unit of solid angle around the
rectionV is given by@37,30#
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G rad~v,V!5
r 2

4p2k
Re$@Eind~v!3H ind~2v!#• r̂%

5
1

4p2k
uf~V!u2. ~23!

The summation overa coming fromf in Eq. ~23! can be
performed using the identity

U(
a51

N

eiaDU2

5
sin2~ND/2!

sin2~D/2!

.2pN(
n

d~D12pn!, N→`, ~24!

where the sum on the right hand side runs over integern.
Noticing that n can only take negative values sinceD.0
@see Eq.~22!#, one finds, upon integration overu, that the
probability of emitting a photon per sphere and unit of a
muthal anglew reduces to

G rad~v,w!

N
5

1

2pk4d
(

n52`

21

ux~Vn!u2. ~25!

For each harmonicn, the emission takes place along a co
whose aperture depends on the photon frequencyv and is
given by the polar directionsVn5(un ,w), where@1#

un5cos21F c

v
1

2pn

vd/cG . ~26!

Equation ~26! responds to the intuitive argument that t
emission can only take place along those directions
which the far field originating in the objects of the string
constructive, and therefore, the difference in phase betw
contiguous objects, given by Eq.~22!, has to be a multiple of
2p.

A threshold energy is obtained for eachn when u5p
~backward emission!, and an absolute threshold is found f
n521, given by v05(2pc/d)/(c/v11). This can be
clearly observed in the emission spectra represented in F
2–6. In particular, Fig. 5~a! shows the dependence of th
polar angle of emission on photon energy forn521. Notice
that the energy of emission for a given angleu is propor-
tional to unu and inversely proportional tod. Therefore, when
d→` ~isolated sphere limit!, the emission can occur for a
angles and energies, and high values ofunu become relevant

D. Electron energy loss

The energy loss suffered by the electron can be obta
from the induced electric field acting back on it@19–23#.
Following previous analyses, one finds@23,30#

DEloss5E dtv•Eind~r t ,t !5E
0

`

vdvG loss~v!,

where
-

r

en

s.

d

G loss~v!5
1

pvE dt Re$e2 ivtv•Eind~r t ,v!% ~27!

can be interpreted as the probability that the electron un
goes a scattering event losing an amount of energyv.

FIG. 2. ~a! Energy loss probability and SP radiation emissi
probability for a 200-keV electron moving parallel to an infini
periodic string of aligned Al spheres~see Fig. 1!. The radius of the
spheres isa550 nm, the period along the string isd5120 nm,
and the distance from the electron trajectory to the sphere cente
b570 nm. The photon emission~energy loss! probability per
sphere and energy range is represented by a solid~dashed! curve for
the first harmonic (n521; see text!. The energy loss spectrum i
the presence of an isolated sphere is shown by a dotted curve f
electron moving with the same velocity and impact parameter.~b!
The same as~a! for b555 nm.~c! Distribution of photon emission
probability per sphere and energy range over azimuthal anglew
under the same conditions as in~b!. The contour curves limiting
white areas correspond to a value of 631024% per eV and per
degree. Consecutive contour curves are separated by 1024 in the
same units. The units % eV21 refer to one event out of 100 incom
ing electrons within 1 eV of photon energy range.
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5748 PRE 61F. J. GARCI´A de ABAJO
Due to the periodicity of the geometry under consid
ation~see Fig. 1!, the contribution of each object of the strin
to the loss probability has to be identical. Actually, inserti
the multipole expansion ofc ind @see Eq.~15!# into Eq. ~1!,
and this in turn into Eq.~27!, one finds that the loss prob
ability per sphere reduces to@30#

G loss~v!

N
5

1

pv2 (
L

KmFvb

vg GReH mv~AL
1!* i lfL

M , ind

1
c

2g
BL* i lfL

E, indJ , ~28!

where use of Eq.~15! has been made. Results for the ener
loss are given in Figs. 2 and 3 and they are discussed in
section.

FIG. 3. The same as Fig. 2 for SiO2 spheres. In~c! the contour
curves limiting white areas correspond to a value of 1024% per eV
and per degree. Consecutive contour curves are separated by
tor of 100.2.
-

y
xt

III. RESULTS FOR STRINGS OF SPHERES

The central results of Sec. II are Eqs.~25! and ~28!. The
former represents the probability of photon emission per
cident electron and per sphere for the geometry of Fig
The emission is decomposed into different harmonicsn, each
of which contributes with a well defined polar angleun for
each photon energyv, as given by Eq.~26!. Equation~28!
represents the electron energy loss probability per sph
These probabilities are shown in Figs. 2–7 and they h
been normalized to the number of spheresN and the energy
range, so that, for instance, a probability of photon emiss
~or energy loss! of 0.1% eV21 in Fig. 2~b! represents the
emission of 0.001N photons per incoming electron~or the
detection of a fraction of 0.001N electrons! within an energy
range of 1 eV.

Besides the parameters shown in Fig. 1, these express
require to input the scattering properties of the spheres in
string, that is, their scattering matrices. Clusters formed
homogeneous spheres made of Al and SiO2 are considered
next. Their scattering matrices have been calculated u
the analytical expression@29,30#

tLL85dLL8F t l
M 0

0 t l
E G ,

where

t l
M5

2 j l~r0!r1 j l8~r1!1r0 j l8~r0! j l~r1!

hl
(1)~r0!r1 j l8~r1!2r0@hl

(1)~r0!#8 j l~r1!
,

t l
E5

2 j l~r0!@r1 j l~r1!#81e@r0 j l~r0!#8 j l~r1!

hl
(1)~r0!@r1 j l~r1!#82e@r0hl

(1)~r0!#8 j l~r1!
,

r05ka, r15kaAe ~here, Im$r1%.0), a is the sphere radius
e is the frequency-dependent dielectric function of Al a
SiO2, respectively, and the prime denotes differentiation w
respect tor0 and r1. In particular, the response of Al ha
been approximated by a Drude dielectric function with bu
plasma energyvp515 eV and dampingh51.06 eV. The
dielectric function of SiO2 has been taken from optical da
@38#.

These two different materials have been chosen beca
they represent prototypical cases of metals and insulat
respectively. Since the latter are unable to attenuate radia
within their energy gaps, one would expect larger pho
emission probabilities in this case. However, although par
the energy lost by the electron is dissipated in the medium
the case of metals, larger intensities are found in this case
shown below.

The radiation emission probabilities have been calcula
from Eqs.~21! and Eq.~25!, where the coefficientsfL

ind are
obtained by solving Eq.~13! with the external field given by
Eq. ~11! as input. The operators appearing in these equat
have been approximated by finite matrices of dimens
l max2umu11 for each azimuthal numberm, wherel max is the
maximum value of the orbital angular momentum numb
under consideration. Convergence has been achieved
l max58 in the examples offered below.

fac-
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FIG. 4. ~a! Probability of pho-
ton emission per sphere and e
ergy range for 200-keV electron
moving parallel to a string of Al
spheres, as calculated from E
~25! for only n521 ~first har-
monic!. The string spacing isd
5120 nm and the sphere radiu
is a550 nm. Different values of
the impact parameterb have been
considered, as shown in the figur
~b! The same as~a! for n522.
~c! The same as~a! for SiO2

spheres.~d! The same as~a! for
n522 and SiO2 spheres.
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Figures 2 and 3 illustrate the energy loss and indu
photon emission probabilities for 200-keV electrons mov
parallel to an infinite periodic string of aligned Al and SiO2

spheres, respectively, as shown in Fig. 1. In the case of S2

~Fig. 3!, the energy loss probability per sphere@dashed
curves, calculated from Eq.~28!#, which is proportional to
the electron intensity that could be measured in an EE
experiment, is seen to follow the photon emission probabi
@solid curves, including onlyn521, and calculated by inte
grating Eq.~25! over azimuthal anglesw# within the region
below 8.5 eV, where the imaginary part of the dielect
function is very small and most of the energy loss is co
verted into SP radiation, leading to an absolute threshold
energy losses atv0'4.24 eV under the conditions of th
figure. In Al ~Fig. 2!, part of the energy loss goes always in
absorption. In particular, this is the case in the energy l
peak at 3.8 eV~below the emission threshold!, which can be
ascribed to the excitation of an intrinsic mode of the strin
However, the radiation emission probability is higher in t
Al case forn521 as compared to silica. The energy lo
probability ~EELS spectrum! for an isolated sphere~dotted
curves! can be obtained from Eq.~28! in the d→` limit,
leading to analytical expressions derived elsewhere@30#. The
latter follows the loss probability in the string at high ener
losses, where the coupling between spheres plays a m
role. However, the low-energy part of the EELS spectrum
an isolated sphere looks very different from that of the stri
and in particular, the former takes non-negligible values
low the threshold of the latter in the case of silica~see Fig.
3!.

The distribution of the emission in azimuthal anglew has
been represented in Figs. 2~c! and 3~c! for strings of Al and
SiO2 spheres, respectively. These materials exhibit differ
w dependence, but in both cases the emission is focuse
the side of the string opposite with respect to the trajecto

Figure 4 shows the probability of photon emission p
d

S
y

-
or

s

.

or
f
,
-

t
on
.

r

sphere as a function of emission energy for 200-keV el
trons moving with different impact parametersb with respect
to the axis of an infinite string of aligned spheres made of
@Figs. 4~a! and ~b!# and SiO2 @Figs. 4~c! and ~d!# for n5
21 @Figs. 4~a! and ~c!# and n522 @Figs. 4~b! and ~d!#.
Notice that the emission is weaker in SiO2 as compared with
Al for n521, in agreement with the results of Figs. 2 and
However, then522 harmonic has comparable magnitu
in both cases, since its threshold occurs at larger energ
where the dielectric function of silica has already a siza
imaginary part. The emission probability increases mo
tonically with decreasing impact parameter as expected.

The dependence of the angle of emission on photon
ergy has been represented in Fig. 5~a! for 200-keV electrons
and different values of the string spacingd, as calculated
from Eq. ~26! for n521. The first-harmonic emission take
place within a finite range of energies, as can be seen in
5~b!, where the emission probability per sphere has b
plotted for different values ofd as a function of photon en
ergy for the case of Al. The bulk of the emission is contain
in the region 3 –9 eV in all cases. Notice that the position
the maxima of emission at around 6 eV and 8 eV is rat
insensitive to the string spacing. Actually, features at th
energies are also observed in the loss spectra of isolate
spheres of the same radius, as shown in Fig. 2, and they
be ascribed to the excitation of dipole and quadrup
modes, respectively, whose energies depend on the sp
radius@30#.

Figure 6 shows the dependence of first-harmonic emiss
spectra on electron energy for two different values of
string spacing, also for Al spheres. Again, the limits impos
by Eq. ~26! are translated into a finite energy domain whe
the emission is allowed. The largest intensities are obtai
for electron energies of 2002600 keV in both cases, thoug
the results for the larger separation@Fig. 6~b!# show an over-
all enhancement of the emission.
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The effects of termination in the string have been inv
tigated using the method summarized in Sec. II A for solv
Maxwell’s equations in the presence of a cluster
arbitrarily-distributed objects@28,31#. Figure 7~a! shows the
probability of photon emission as a function of photon e
ergy for finite strings ofN aligned Al spheres. Different val
ues of N have been considered, as shown by labels.
distribution of the emission in polar angleu has been repre
sented in Figs. 7~b!–7~f!. The largerN, the more focused the
emission. Actually, upon inspection of Eq.~24!, the spread in
phase difference in the emission is seen to be proportion
dD'2p/N, which results in a polar-angle spread given
du'2pc/(Nvd sinu). Under the conditions of Fig. 7 an
for v56 eV, this leads todu'50°/N, in good agreemen
with the results shown in the figure. The increase of po
angle spread with decreasingv predicted by the above ex
pression is also observed in the figures.

Notice that two intense regions are shaping up asN in-

FIG. 5. ~a! Dependence of the polar angle of SP emission
photon energy, as calculated from Eq.~26! for n521 and various
values ofd ~see Fig. 1!. ~b! Probability of photon emission pe
sphere and energy range forn521 as a function of photon energ
and spacingd for a string of Al spheres of radiusa550 nm. The
electron impact parameter isb555 nm. The regions where emis
sion is forbidden have been represented by shaded areas. The
tour curves limiting white areas correspond to a value
0.12% eV21. Consecutive contour curves are separated by a
ference of 0.02% eV21.
-
g
f

-

e

to

r-

creases in Figs. 7~d!–7~f!. They correspond ton521 and
n522, respectively, and their profiles converge to the on
given in Fig. 5~a! asN→`.

IV. CONCLUDING REMARKS

The emission of photons by interaction of fast electro
with aligned strings of nanoparticles has been analyzed th
retically. This constitutes a generalization of the Smi
Purcell effect@1#, which takes place when an electron mov
near a grating. The Maxwell equations have been solved a
lytically in the presence of a string of homogeneous sphe
and the cases of Al and SiO2 have been considered for var
ous values of the different parameters involved in the geo
etry ~i.e., electron energy and impact parameter, string sp
ing, and sphere radius!. This approach can be employed
investigate strings formed by arbitrary objects, provided o
knows their scattering matrices, and a trivial extension wo
lead to the simulation of periodic strings with a basis form
by more than just one object.

Under the conditions of Figs. 6~b!, where Al spheres of
diameter 100 nm separated 60 nm are considered, the m

n

on-
f
f-

FIG. 6. SP radiation emission probability per sphere and ene
range as a function of photon energy and electron energy for
geometry illustrated in Fig. 1. The sphere radius isa550 nm, the
impact parameter isb555 nm, and the string spacing isd
5120 nm and 160 nm in~a! and ~b!, respectively. The regions
where emission is forbidden have been represented by shaded a
The contour curves limiting white areas correspond to a value
0.14% eV21 and 0.16% eV21 in ~a! and ~b!, respectively. Con-
secutive contour curves are separated by a difference
0.02% eV21 in both cases.
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FIG. 7. Probability of photon emission for an electron moving parallel to a finite string ofN aligned Al spheres as a function of photo
energy and polar angleu. The emission has been integrated over the azimuthal anglew. The geometry is the same as in Fig. 1, except t
the string is finite. The values ofN under consideration are 1, 3, 9, 15, and 25 in~b!–~f!, respectively. The integral over all directions o
emission is shown in~a! for different values ofN, includingN5`. Here, the probability has been normalized to the number of spherN
in each case and consecutive curves have been shifted 0.03% eV21 upwards to improve readability.
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mum of photon emission occurs when the electron energ
300 keV. For a sphere-electron separation of 5 nm, ass
ingcoherent emission from 100 Al spheres and an elec
in-tensity of 1 mA ~this could be achieved by using a plan
electron beam in interaction with different regions of a pla
covered by strings of aligned spheres!, the average outgoing
flux in the energy regionv54210 eV is ;1012 photons
is
-

n

e

per second per eV. This has to be compared with value
;1013 on the sample within end stations of third generati
synchrotron lines in the same energy range.

Using a more general method to solve exactly the M
well equations in the presence of arbitrarily distributed
electric objects@28,31#, finite strings of Al spheres have bee
investigated. Strings formed by 50 spheres have been sh
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to be able to narrow the bulk of the emission to within
polar angle window ofdu51°.
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